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Absence of surface mode in a viscoelastic material with surface tension
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The surface waves in the viscoelastic media with the surface tension are studied using the Voigt-Kelvin
model of the viscoelasticity. It is shown that the surface mode of oscillation does not exist in the parameter
region where the effect of surface tension is larger than that of the elastic stress at the surface unless the
viscous stress masks the elastic stress in the bulk. In the region, the surface oscillation is suppressed and the
oscillation beneath the surface diffuses after the pulse goes into the bulk. The experimental relevance of the
present results is also discussE81063-651X%98)12412-1

PACS numbefs): 68.35.Ja, 68.10.Et, 83.10.Dd

Surface modes of oscillation in a material are quite differ-model does not become particularly bad around the sol-gel
ent from bulk modes due to the boundary condition at thdransition point because we are interested in the phenomenon
surface. In an elastic material, the longitudinal and the transwith finite frequency and wavelength. The sol phase behav-
verse modes are mixed in the Rayleigh m¢slerface modg  ior is also obtained within this model by setting the elasticity
and its speed is slower than both of them. As for the fluidzero. _
where only restoring force is the surface tension, the disper- With this model, we demonstrate that the surface mode
sion of the surface wave is not linear but given by k®2 does not exist around the region where the surface tension
The transition between the two modes in the viscoelasti€ompetes with the elastic stress. o
material like polymer solutions or gels has been studied theo- We assume the viscoelastic material is occupied inzthe
retically [1-3] and experimentally4—9]. >0 space and the surface is located at xhg plane. The

. The characters of these_ two 'ques,'however., are qqitdisplacement fieldi(x,y,z,t) can be decomposed into the
different and they cannot mix easily in awsc_oelasnc materiakyansverse panflt and the longitudinal parlfn as
where both the elastic and the surface tension operate. It has
been expected that the spectral peak of the surface tension u=u+u;; V-0,=0, Vxu=0; )
wave in the thermal fluctuation does not transform into the
Rayleigh peak smoothly but the two peaks tend to co-exist ifhen the equations of motion far, andu, can be expressed
the transition region, and the spectral structure should not bgg
simple [2]. The expected shoulder structure of the spectral

peak has not been observed clearly but the substantial in- - I\ _,—~
crease of the spectral width was demonstrated in the transi- pu=|E+ ﬂﬁ)v U, )
tion region for polymer solutions upon increasing density
[6,7] . P o\l ..
Recently, a careful experiment was done to measure the pu;= 3 E+ s + K+§E V2u,, 3

speed and the attenuation of thgternally excitedsurface

wave in the sol and the gel phase of tungstic &z, which  \\here the dot denotes the time derivative ani the mass
undergoes a sol-gel transition upon decreasmg pH, and Hensity,E andK are the shear and bulk modulus, anénd
was shown that there is an anomalous behavior around théeare the shear and bulk viscosity, respectively. Using a po-

sol-gel transition point; the wave speed rises sharply and . . . . -
then drops discontinuously, and the attenuation rate has gnual functiong, the longitudinal displacemen can be
épressed as

sharp peak. These behaviors have not been expected by i

previous theories. - =
Being motivated by the above experiment, we analyze the U=V, )

dispersion relation of surface modes of a viscoelastic matean equation of motiok3) is expressed as

rial. We focus our attention to the experimental situation

where the inverse of the surface wave frequency is much .

smaller than the structural relaxation time of the polymer phI=

network over the wavelength. Then the Maxwell type of vis-

coelasticity can be ignored and the Voigt-Kelvin viscoelas-Tne stress tensar;; is given by

ticity, in which the stress is the sum of the elastic and the

viscous stresses, is a good model. Note that the Voigt-Kelvin

3 +

d 14 "
E+7]E K+§E Ve, . 5)

Trle]sy,
(6)

Jd Jd
O'ijZZ(E+ 77%)(8”_%-”'[8]5”)4' K+§E

*Present address: NTT Network Service Systems Laboratories,
3-9-11, Midori-Cho, Musashino, Tokyo 180, Japan. wheree is the strain tensor
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For simplicity, we take the incompressible limiK,— oo,
which is good for the experimental situation where the sur-

Density
©
o

face wave speed under investigation is much slower than thez o P
longitudinal wave speed. Then we have 3 o
N A

V2¢,=0 (8) s o] A

| | | | | |
and 0 10 20 30 40 0 10 20 30 40 O 10 20 30 40

: (IE)
J .
oij=2| E+ nﬁ)sij +pd 6. ©) FIG. 1. Time developments of the oscillation for the=0 case.

The energy density is plotted in an arbitrary unit against the depth

in the unit of (y/E). The wave numbers in the direction arek

=0.5,1, and 5 E/y) and the initial states are given by E@O)

Jt(x,z,t):[—f’(z,t)/ik,O,f(z,t)]e”‘X, (10) wit_h =1, 0.51,/2and 0.5¢/E), respectively. The time is shown in
units of (p/E)~'“y/E.

Now we examine the solution of the form

— ikx—kz
Hxz=¢(t)e ’ @) case of the elastic materiaE 0, y==0) and the capil-
assuming the physical quantities does not depend ory thelary wave dispersiom=+/y/pk®? in the case of the fluid
coordinate and thg component of the displacement is zero. (y#0, E= =0).
In Eq. (10), the prime denotes the derivative in The pa- In order to see how the Rayleigh mode and capillary
rameterk is the wave number in th& direction; k>0 in  mode exclude each other, we consider first the case without
order that the solution should be the surface mode. Then thiae dissipation =0, E#0, andy+#0); then Eq.(18) be-

equation of motion2) is given by comes
Hat=|E+ 9o —k2+a2f 12 2y2_c2[ Y N po
pf(z,t)= Upn -2/ f(@Y. (12 (2-c?)?—c? Zk=4y1-c% c=y/g . 19
The boundary conditions at=0 are The dispersion relation is obtained by determinmdor a
U given value ok. Again, note that the square root should have
z

(13 a positive real part.
This equation gives the Rayleigh wavelike dispersion for
wherey is the surface tension. These can be represented ks$ El'y. In the case ok>E/y, however, it does not have a
Y ' P Ldlution in the physical branch of the square root. This
—[£"(01t) +K2F(0t) ]+ 2k3¢h(t) =0, (14 ~ Means that there is no surface mode in the regiork of
>E/vy, where the capillary stress dominates.

In order to examine what is happening in the region with-

0y;=0, 0,7~=— '}’Wa

J .
2|E+n— [£/(00)+k2p(t) ]+ peb(t) out the surface modes, we solve the equation of mdtl@
numerically with =0 under the boundary conditior{$4)
=yk?[f(0t) —kep(t)]. (15  and(15) from the initial state given by(z,t=0) localized

. . . around the surface within a lengthas
If we assume the sinusoidal time dependence,

. . f(z,t=0)="f,e 7N 20
f(z,t)="fge 21 o(t)=oe ', (16 ( )=To 9
ith The time developments are shown in Fig. 1, where energy
Wi density
k=\k*—po’lp(w), w(w)=E-ioyn, (17 2
- L[ dup au;
: . . Ue= >, 3pUZ+ aBl—+=] . (21
then, from(14) and(15), we obtain the equation to determine =X,z ij=x,z IXj  IX

the dispersion relation,

2_ P®
<2k ()

is plotted as a function af for k=0.5, 1, and 5 E/y) with

2 poik® s |, PO° the initial configuration with\=1, 0.5, and 0.5 {/E), re-

_Vﬂ(w)2:4k k®= m (18) spectively. Note that the initial shape af is not propor-
tional to (e~ ?*)2 because the longitudinal component given

Note that the branch with the positive real part should beby Egs.(4) and(11) decays ag "% i

2

in z
taken for the square roots in order that the mode should be It can be seen that the surface oscillation remains after the
localized around the surface. pulse is gone into the bulk for the case lo£0.5 (E/vy),

It is easy to examine that this equation gives the Rayleiglwhere the surface mode is allowed. On the other hand, the
wave dispersionw=cg\E/p-k with cg=0.9553, for the oscillation at the surface is strongly suppressed kor
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p(yM?)

Overdamped

E

Q FIG. 3. Schematic phase diagram in ta&k plane in the loga-

] ) ) rithmic scale. The shaded region is the gap region, where the sur-
FIG. 2. Dispersion relations fat=E(#/y)?p=0.5,0.3,and 0.  fzce wave does not exist.

The real part of)=(7%%/py?) w is plotted againsQ@=(7?/p/ y)k.

_ o It is instructive to examine how the gap region arises be-
=5 (E/y), where the surface mode is not allowed. It is inter-tween the Rayleigh and the capillary region. For small

esting to see, in this case, that there is a peak of oscillatioBnougtk, the elastic stress dominates and the surface wave is
just beneath the surface in addition to the pulse that travelRayleigh like. ForE< p(y/7)2, upon increasing, the sur-

into the bulk, and the peak of the oscillation diffuses away agace tension becomes dominant at
the pulse goes in the bulk.

If the viscosity is introduced into the system, the situation k~Ely, (24)
becomes slightly more complicated. There takes place the

competition among three stresses: the elastic stress, the Syjnere the surface mode disappears as we have seen for the

face tension, and the viscous stress. Depending upon whicfssipationless case. Asincreases further, the elastic stress
stress dominates, the mode character is expected to be onejgfaken over by the viscous stress at
the following: the Rayleigh mode, the capillary mode, or the
overdamped liquid mode. In addition to these, however, p E 213
there is the parameter region where no surface mode is al- k~< \ﬁ —) ,
lowed, as we have seen. Y
In Fig. 2, the result of the dispersion relation f&r
=0.5,0.3, and Op(y/75)? is given; the real part ofQ)

=(7%1py?) w is plotted as a function 0Q=(7?/py)k. In

(25
7

then the capillary wave emerggk2].

It is very suggestive that the existence of the capillary
the case ofE=0.30(y/7)? for small Q, the dispersion is wave depend; upon the competition betwegn the elastic
linear and the mode is the Rayleigh wavelike, but for anSlress andhe viscous stresmot_the_surface tension. No mat-
intermediate value o®, the mode becomes capillary wave- ter how large the surf_ace tension is, _the capillary wave is not
like, and for largeQ, O becomes pure imaginary and the gllowed u.nder the existence of elastic stress unlesg there ex-
mode is the overdamped liquid mode. Between the elasti tS.th? viscous stress. This can be explained as in the fol-
mode and the capillary mode, there exists the region wher wing: T.he mode characters of the two.are too dlffergnt to
there exists no surface mode, namely, there is no solution f prm a mixed F"Ode' _therefore, t_he Rayleigh wave domlnat(_as
Q on the physical branch of the square root in EX®); we rather _than mixes with the capillary mode _When the elastic
call it the “gap region.” stress is larger. On. the other hand, the capillary wave cannot

overtake the Rayleigh wave even when the surface tension at

The phase diagram in the-k plane has been obtained surface is larger than the elastic stress because the surface
numerically by calculating the dispersion from Eg§) [11], tension operates only at the surface and the displacement

but the result is illustrated in Fig. 3 schematically. It can be

understood as in the following way. The boundary betweerﬁ.EId inside is governed by the elastic stress in the bulk. The

the Rayleigh mode and the overdamped liquid mode is de\_/|scosity, however, gives the capillary wave a chance to win

termined by the competition between the elastic stress antay masking the effect_s O.f the elastic stress. .

. - - The overdamped liquid mode under the existence of the
the viscous stress, namefgk|u| and nwk|ul, therefore the g\ (tace tension is also worth mentioning: In the bulk, it has
boundary is given by

the dispersion

1
k~ —\pE, (22) w=—i2k2. 26)
7 p

becausev~ E/p-k in the Rayleigh mode region. Similarly, As for the surface mode, there is a similar overdamped mode
the boundary between the capillary wave and the overwith the dispersion
damped liquid mode is given by

_ "0
k~pyl 7. (23 0=l CRk @7
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with the same constamiz than the Rayleigh wave, and this  Before concluding, let us discuss possible effects of struc-
is the only one in the case without the surface tension. Withural relaxation, which we ignore in the present work. The
the surface tension, however, there appears another modstructural relaxation will relax part of the elastic stress for the
the damping rate of which is smaller than the other’s; thelonger time scale than its relaxation timg,, and can be

dispersion is given by expressed by the Maxwell model of viscoelasticity in a phe-
nomenological level. If we include the effect, the capillary

w~—i lk (289  mode region would extend into the gap region to some de-

27 gree on the smalk side because the structural relaxation

reduces the bulk elastic stress in a longer time scale than the

Let us examine the experimental relevance of this ga&trgctural relaxation timer;. The.way that the gap region
region of the surface wave. In the recent experinja6i, it  Sinks from the present resulfig. 3 depends upon the
was reported that the surface wave shows anomalous behaJetailed structure of the model and the relevant time scale;
ior in the tungstic acid; sharp increase and discontinuoufor @>1/7g (0<1/7g), the part of the stress can be treated
drop of wave speed and attenuation peak of the surface waRs €lastiaviscous. The basic feature of the phase diagram,
in the frequency range- 100 Hz have been observed around however, should not change as long as there exists a pure
the sol-gel transition point, where the elasticity is very smallelastic component of the stress in the system as we assumed
and the Rayleigh wave speed is of the order of 0.1 m/sin the present study.

Within the present framework, the sharp increase of the wave In summary, we found that, in the viscoelastic material,
speed can be interpreted as the result of the group spedidere is a parameter region where the surface mode is absent
increase at the upper edge of the gap in the dispersion curvand it corresponds to the region where the surface wave
The discontinuous drop of the wave speed and the large agnomaly is found in the recent experiment on tungstic acid
tenuation of the surface wave come from the suppression qfiL0].

the surface oscillation in the gap region.

The typical values of the parameters for the material ]
arep~1C° kgim®, 7~10"2 Pas, y~10"' N/m. The The authors would like to thank H. Okabe, K. Kuboyama,

elastic modulus changes rather rapidly around the sol-géf- Hara, and S. Kai for showing their experimental data prior
transition point, buE~10 Pa in the region where the sound to publication. This work is partially supported by Grant-in-
speed is 0.1 m/s, then the expected gap regiok~id(?  Aid for Scientific ResearcliC) (No. 0940468 provided by
~10*3 m™1, or w~10'~10%3 s 1. This is consistent with the Ministry of Education, Science, Sports, and Culture, Ja-

the region where the anomaly is observed. pan.

for k> ypl 7°.
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