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Absence of surface mode in a viscoelastic material with surface tension

Hiizu Nakanishi and Satoshi Kubota*
Department of Physics, Kyushu University 33, Fukuoka 812-8581, Japan

~Received 9 July 1998!

The surface waves in the viscoelastic media with the surface tension are studied using the Voigt-Kelvin
model of the viscoelasticity. It is shown that the surface mode of oscillation does not exist in the parameter
region where the effect of surface tension is larger than that of the elastic stress at the surface unless the
viscous stress masks the elastic stress in the bulk. In the region, the surface oscillation is suppressed and the
oscillation beneath the surface diffuses after the pulse goes into the bulk. The experimental relevance of the
present results is also discussed.@S1063-651X~98!12412-1#

PACS number~s!: 68.35.Ja, 68.10.Et, 83.10.Dd
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Surface modes of oscillation in a material are quite diff
ent from bulk modes due to the boundary condition at
surface. In an elastic material, the longitudinal and the tra
verse modes are mixed in the Rayleigh mode~surface mode!,
and its speed is slower than both of them. As for the fl
where only restoring force is the surface tension, the disp
sion of the surface wave is not linear but given byv}k3/2.
The transition between the two modes in the viscoela
material like polymer solutions or gels has been studied th
retically @1–3# and experimentally@4–9#.

The characters of these two modes, however, are q
different and they cannot mix easily in a viscoelastic mate
where both the elastic and the surface tension operate. I
been expected that the spectral peak of the surface ten
wave in the thermal fluctuation does not transform into
Rayleigh peak smoothly but the two peaks tend to co-exis
the transition region, and the spectral structure should no
simple @2#. The expected shoulder structure of the spec
peak has not been observed clearly but the substantia
crease of the spectral width was demonstrated in the tra
tion region for polymer solutions upon increasing dens
@6,7#

Recently, a careful experiment was done to measure
speed and the attenuation of theexternally excitedsurface
wave in the sol and the gel phase of tungstic acid@10#, which
undergoes a sol-gel transition upon decreasing pH, an
was shown that there is an anomalous behavior around
sol-gel transition point; the wave speed rises sharply
then drops discontinuously, and the attenuation rate ha
sharp peak. These behaviors have not been expected b
previous theories.

Being motivated by the above experiment, we analyze
dispersion relation of surface modes of a viscoelastic m
rial. We focus our attention to the experimental situati
where the inverse of the surface wave frequency is m
smaller than the structural relaxation time of the polym
network over the wavelength. Then the Maxwell type of v
coelasticity can be ignored and the Voigt-Kelvin viscoela
ticity, in which the stress is the sum of the elastic and
viscous stresses, is a good model. Note that the Voigt-Ke

*Present address: NTT Network Service Systems Laborato
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model does not become particularly bad around the sol
transition point because we are interested in the phenome
with finite frequency and wavelength. The sol phase beh
ior is also obtained within this model by setting the elastic
zero.

With this model, we demonstrate that the surface mo
does not exist around the region where the surface ten
competes with the elastic stress.

We assume the viscoelastic material is occupied in thz
.0 space and the surface is located at thex-y plane. The
displacement fielduW (x,y,z,t) can be decomposed into th
transverse partuW t and the longitudinal partuW l as

uW 5uW t1uW l ; ¹W •uW t50, ¹W 3uW l50; ~1!

then the equations of motion foruW t anduW l can be expressed
as

ruẄ t5S E1h
]

]t D¹2ut
W , ~2!

ruẄ l5F4

3S E1h
]

]t D1S K1z
]

]t D G¹2uW l , ~3!

where the dot denotes the time derivative andr is the mass
density,E andK are the shear and bulk modulus, andh and
z are the shear and bulk viscosity, respectively. Using a
tential functionf l , the longitudinal displacementuW l can be
expressed as

uW l5¹W f l ; ~4!

then equation of motion~3! is expressed as

rf̈ l5F4

3S E1h
]

]t D1S K1z
]

]t D G¹2f l . ~5!

The stress tensors i j is given by

s i j 52S E1h
]

]t D ~« i j 2
1
3 Tr@«#d i j !1S K1z

]

]t DTr@«#d i j ,

~6!

where« is the strain tensor
s,
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« i j 5
1

2S ]ui

]xj
1

]uj

]xi
D . ~7!

For simplicity, we take the incompressible limit,K→`,
which is good for the experimental situation where the s
face wave speed under investigation is much slower than
longitudinal wave speed. Then we have

¹2f l50 ~8!

and

s i j 52S E1h
]

]t D « i j 1rf̈ l d i j . ~9!

Now we examine the solution of the form

uW t~x,z,t !5@2 f 8~z,t !/ ik,0,f ~z,t !#eikx, ~10!

f l~x,z,t !5f~ t !eikx2kz, ~11!

assuming the physical quantities does not depend on ty
coordinate and they component of the displacement is zer
In Eq. ~10!, the prime denotes the derivative inz. The pa-
rameterk is the wave number in thex direction; k.0 in
order that the solution should be the surface mode. Then
equation of motion~2! is given by

r f̈ ~z,t !5S E1h
]

]t D S 2k21
]2

]z2D f ~z,t !. ~12!

The boundary conditions atz50 are

sxz50, szz52g
]2uz

]x2 , ~13!

whereg is the surface tension. These can be represente

2@ f 9~0,t !1k2f ~0,t !#12k3f~ t !50, ~14!

2S E1h
]

]t D @ f 8~0,t !1k2f~ t !#1rf̈~ t !

5gk2@ f ~0,t !2kf~ t !#. ~15!

If we assume the sinusoidal time dependence,

f ~z,t !5 f 0e2kz2 ivt, f~ t !5f0e2 ivt, ~16!

with

k[Ak22rv2/m~v!, m~v![E2 ivh, ~17!

then, from~14! and~15!, we obtain the equation to determin
the dispersion relation,

S 2k22
rv2

m~v! D
2

2g
rv2k3

m~v!2 54k3Ak22
rv2

m~v!
. ~18!

Note that the branch with the positive real part should
taken for the square roots in order that the mode should
localized around the surface.

It is easy to examine that this equation gives the Rayle
wave dispersionv5cRAE/r•k with cR50.9553, for the
-
he

.

he

as

e
e

h

case of the elastic material (EÞ0, g5h50) and the capil-
lary wave dispersionv5Ag/rk3/2 in the case of the fluid
(gÞ0, E5h50).

In order to see how the Rayleigh mode and capilla
mode exclude each other, we consider first the case with
the dissipation (h50, EÞ0, andgÞ0); then Eq.~18! be-
comes

~22c2!22c2S g

ED k54A12c2; c[Ar

E

v

k
. ~19!

The dispersion relation is obtained by determiningc for a
given value ofk. Again, note that the square root should ha
a positive real part.

This equation gives the Rayleigh wavelike dispersion
k<E/g. In the case ofk.E/g, however, it does not have
solution in the physical branch of the square root. T
means that there is no surface mode in the region ok
.E/g, where the capillary stress dominates.

In order to examine what is happening in the region wi
out the surface modes, we solve the equation of motion~12!
numerically withh50 under the boundary conditions~14!
and ~15! from the initial state given byf (z,t50) localized
around the surface within a lengthl as

f ~z,t50!5 f 0e2z/l. ~20!

The time developments are shown in Fig. 1, where ene
density

ue5 (
i 5x,z

1
2 ru̇i

21 (
i , j 5x,z

1
4 ES ]ui

]xj
1

]uj

]xi
D 2

, ~21!

is plotted as a function ofz for k50.5, 1, and 5 (E/g) with
the initial configuration withl51, 0.5, and 0.5 (g/E), re-
spectively. Note that the initial shape ofue is not propor-
tional to (e2z/l)2 because the longitudinal component giv
by Eqs.~4! and ~11! decays ase2kz in z.

It can be seen that the surface oscillation remains after
pulse is gone into the bulk for the case ofk50.5 (E/g),
where the surface mode is allowed. On the other hand,
oscillation at the surface is strongly suppressed fork

FIG. 1. Time developments of the oscillation for theh50 case.
The energy density is plotted in an arbitrary unit against the depz
in the unit of (g/E). The wave numbers in thex direction arek
50.5, 1, and 5 (E/g) and the initial states are given by Eq.~20!
with l51, 0.5, and 0.5(g/E), respectively. The time is shown in
units of (r/E)1/2g/E.
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55 (E/g), where the surface mode is not allowed. It is inte
esting to see, in this case, that there is a peak of oscilla
just beneath the surface in addition to the pulse that tra
into the bulk, and the peak of the oscillation diffuses away
the pulse goes in the bulk.

If the viscosity is introduced into the system, the situati
becomes slightly more complicated. There takes place
competition among three stresses: the elastic stress, the
face tension, and the viscous stress. Depending upon w
stress dominates, the mode character is expected to be o
the following: the Rayleigh mode, the capillary mode, or t
overdamped liquid mode. In addition to these, howev
there is the parameter region where no surface mode is
lowed, as we have seen.

In Fig. 2, the result of the dispersion relation forE
50.5, 0.3, and 0r(g/h)2 is given; the real part ofV
[(h3/rg2)v is plotted as a function ofQ[(h2/rg)k. In
the case ofE50.3r(g/h)2, for small Q, the dispersion is
linear and the mode is the Rayleigh wavelike, but for
intermediate value ofQ, the mode becomes capillary wav
like, and for largeQ, V becomes pure imaginary and th
mode is the overdamped liquid mode. Between the ela
mode and the capillary mode, there exists the region wh
there exists no surface mode, namely, there is no solution
V on the physical branch of the square root in Eq.~18!; we
call it the ‘‘gap region.’’

The phase diagram in theE-k plane has been obtaine
numerically by calculating the dispersion from Eq.~18! @11#,
but the result is illustrated in Fig. 3 schematically. It can
understood as in the following way. The boundary betwe
the Rayleigh mode and the overdamped liquid mode is
termined by the competition between the elastic stress
the viscous stress, namely,EkuuW u andhvkuuW u, therefore the
boundary is given by

k;
1

h
ArE, ~22!

becausev;AE/r•k in the Rayleigh mode region. Similarly
the boundary between the capillary wave and the ov
damped liquid mode is given by

k;rg/h2. ~23!

FIG. 2. Dispersion relations fora[E(h/g)2/r50.5, 0.3, and 0.
The real part ofV[(h3/rg2)v is plotted againstQ[(h2/r/g)k.
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It is instructive to examine how the gap region arises
tween the Rayleigh and the capillary region. For sm
enoughk, the elastic stress dominates and the surface wav
Rayleigh like. ForE,r(g/h)2, upon increasingk, the sur-
face tension becomes dominant at

k;E/g, ~24!

where the surface mode disappears as we have seen fo
dissipationless case. Ask increases further, the elastic stre
is taken over by the viscous stress at

k;SAr

g

E

h D 2/3

, ~25!

then the capillary wave emerges@12#.
It is very suggestive that the existence of the capilla

wave depends upon the competition between the ela
stress andthe viscous stress, not the surface tension. No ma
ter how large the surface tension is, the capillary wave is
allowed under the existence of elastic stress unless there
ists the viscous stress. This can be explained as in the
lowing: The mode characters of the two are too different
form a mixed mode, therefore, the Rayleigh wave domina
rather than mixes with the capillary mode when the elas
stress is larger. On the other hand, the capillary wave can
overtake the Rayleigh wave even when the surface tensio
surface is larger than the elastic stress because the su
tension operates only at the surface and the displacem
field inside is governed by the elastic stress in the bulk. T
viscosity, however, gives the capillary wave a chance to w
by masking the effects of the elastic stress.

The overdamped liquid mode under the existence of
surface tension is also worth mentioning: In the bulk, it h
the dispersion

v52 i
h

r
k2. ~26!

As for the surface mode, there is a similar overdamped m
with the dispersion

v52 i
h

r
cRk2 ~27!

FIG. 3. Schematic phase diagram in theE-k plane in the loga-
rithmic scale. The shaded region is the gap region, where the
face wave does not exist.
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with the same constantcR than the Rayleigh wave, and th
is the only one in the case without the surface tension. W
the surface tension, however, there appears another m
the damping rate of which is smaller than the other’s;
dispersion is given by

v'2 i
g

2h
k ~28!

for k@gr/h2.
Let us examine the experimental relevance of this g

region of the surface wave. In the recent experiment@10#, it
was reported that the surface wave shows anomalous be
ior in the tungstic acid; sharp increase and discontinu
drop of wave speed and attenuation peak of the surface w
in the frequency range;100 Hz have been observed arou
the sol-gel transition point, where the elasticity is very sm
and the Rayleigh wave speed is of the order of 0.1 m
Within the present framework, the sharp increase of the w
speed can be interpreted as the result of the group s
increase at the upper edge of the gap in the dispersion cu
The discontinuous drop of the wave speed and the large
tenuation of the surface wave come from the suppressio
the surface oscillation in the gap region.

The typical values of the parameters for the mate
are r;103 kg/m3, h;1022 Pa s, g;1021 N/m. The
elastic modulus changes rather rapidly around the sol
transition point, butE;10 Pa in the region where the soun
speed is 0.1 m/s, then the expected gap region isk'102

;103.3 m21, or v'101;102.3 s21. This is consistent with
the region where the anomaly is observed.
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Before concluding, let us discuss possible effects of str
tural relaxation, which we ignore in the present work. T
structural relaxation will relax part of the elastic stress for t
longer time scale than its relaxation timetst, and can be
expressed by the Maxwell model of viscoelasticity in a ph
nomenological level. If we include the effect, the capilla
mode region would extend into the gap region to some
gree on the smallk side because the structural relaxati
reduces the bulk elastic stress in a longer time scale than
structural relaxation timetst. The way that the gap region
shrinks from the present result~Fig. 3! depends upon the
detailed structure of the model and the relevant time sc
for v@1/tst (v!1/tst), the part of the stress can be treat
as elastic~viscous!. The basic feature of the phase diagra
however, should not change as long as there exists a
elastic component of the stress in the system as we assu
in the present study.

In summary, we found that, in the viscoelastic materi
there is a parameter region where the surface mode is ab
and it corresponds to the region where the surface w
anomaly is found in the recent experiment on tungstic a
@10#.
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